The I/O Trax system allows users to install remote field I/O devices without having to invest in any other controllers. The I/O Trax is an affordable and practical distributed I/O system. This small modular device is easy to install to machinery or application components - saving time, troubleshooting, and excess field wiring.
The I/O TRAX is a flexible and affordable solution designed to connect, monitor and control field-remote devices.

FEATURES

- Remote network diagnostics
- Line fault monitoring and LED status display per channel
- Four analog 4-20 mA isolated inputs
- Four digital inputs, optically isolated
- Two relay alarm outputs
- Direct connectivity to industrial sensors and actuators
- Modbus RS485 communication with two alarm relays
- Din-rail Modular design
- Accutron LiveScript Technology, our web-based app for easy and quick configuration
- Ultra-compact design for application where a typical PLC or I/O solution simply would not fit
- Isolated 4-20 mA inputs
- Discrete digital I/O
- Quick snap connections
- LED indicators
- Built-in Modbus RTU, Modbus ASCII
- Three bus couplers use Ethernet, Modbus TCP, Profibus protocols

BENEFITS

- Simple
- Cost effective
- Added value in remote location
- Network accessibility
- Modular design
- Small footprint
REMOTE I/O ALSO ALLOWS YOU TO EXPAND YOUR PROCESS CONTROL SYSTEM BEYOND YOUR LOCAL PLC STATIONS

☑ Connect, monitor, control sensors (gas, temperature, pressure, airflow etc.)

APPLICATIONS

☑ Integrate and connect your instrumentation devices
☑ Measure and control industrial sensors and actuators

DIFFERENCES BETWEEN I/O TRAX 1 AND I/O TRAX 2

I/O TRAX 1

Modbus Slave
2 x Relay Outputs
4 x Analog Inputs (Isolated)
4 x Digital Inputs

I/O TRAX 2

Modbus Slave
4 x Open collector digital outputs
4 x Analog outputs
4 x Digital inputs
When combined with the COMMTRAX module, the I/O TRAX can be controlled and monitored over a remote network. This opens up many possibilities for how you control your systems and where from.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Power Input</th>
<th>Relay Ratings</th>
<th>Rated Current</th>
<th>Switching Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 to 30VDC, 50mA at 24V [1.2W]</td>
<td>Max Switching Voltage: 220VDC, 250VAC</td>
<td>5A</td>
<td>60W, 62.5VA</td>
</tr>
</tbody>
</table>

Digital Inputs

<table>
<thead>
<tr>
<th>Range: 0VDC to 27VDC</th>
<th>Absolute Maximum</th>
<th>Current Inputs</th>
<th>Absolute maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input on (0) = _3VDC</td>
<td>30VDC</td>
<td>Range: 0mA to 20.1mA</td>
<td>40mA</td>
</tr>
<tr>
<td>Input off (1) = _2VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Mounting</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 cm X 6.2 cm X 5.3 cm</td>
<td>DIN rail mounted [35mmx 7.5mm]</td>
<td>-40°C to +80°C</td>
</tr>
</tbody>
</table>